
;/
N90-13427

_UE COVARIANCE SIMULATION ___ THE

ZUV_ _DAT_ FILTER

by

• **

I. Y. Bar-Itzhack and R, R. Harman

NASA - Goddard Space Flight Center

Greenbelt MD, 20771

This paper presents a covartance analysts of the
performance and sensitivity of the attitude

determination Extended Kalman Filter (EKF) used by the
On Board Computer (OBC) of the Extreme Ultra Vtolet

Explorer (EUVE) spacecraft. The lineartzed dynamics and

measurement equations of the error states are derived
which constitute the "truth model" describing the real
behavior of the systems involved. The "design _del"

used by the OBC EKF is then obtained by reducing the
order of the truth model. The covariance matrix of the
EKF which uses the reduced order model ts not the
correct covartance of the EKF estimation error. A "true

covariance analysis" has to be carried out In order to
evaluate the correct accuracy of the OBC generated
estimates. The results of such analysis are presented
which indicate both the performance and the sensitivity
of the OBC EKF.

I.O ]NTROOUCTION

The Extreme Ultraviolet Explorer (EUVE) is scheduled to

be launched by a Delta launch vehicle in August 1990

into a 550 km orbit with a 28.5 degree inclination. The

EUVE experiment will observe stellar objects emitting

electromagnetic radiation with wavelengths of 100 to

iO00 angstroms. The spacecraft design is called an

Explorer Platform (EP). The EP is designed to be

flexible enough to be used by many different

experiments. The EP consists of three main modules:

experiment, Platform Equipment Deck (PED), and the

multimission modular spacecraft (MMS). The MMS contains
the attitude control system, power system, and the

command and data handling system. The EUVE mission is

divided into two phases: all sky survey and

spectroscopy. In the all sky survey, the spacecraft

will be rotating at 3 revolutions per orbit (3 RPO

about the roll axis) while instruments perpendicular to

the roll axis scan the sky. Six months later, EUVE

will be three axis stabilized at selected spectroscopic

targets.

2.0ALGOR_

2.1 INTRODUCTION

The attitude of the Explorer Platform (EP) is

determined by gyros which measure the angular rate

vector of the EP, by two fixed-head star trackers

(FHST), and by one fine sun sensor (FSS). The gyros

yield three components of the angular rate vector of

the EP rotation with respect to inertial space. The

components measured by the gyros are the projections of

the vector on the body axes, which are the axes of the

attitude control system (ACS).
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If the exact orientation of the ACS with respect to

inertial coordinates is known at some point, if the

gyro outputs are perfect, and if no computation errors

are introduced when solving the attitude propagation

equations, then From that time on the EP attitude is

known exactly. However, since the initial knowledge of

the attitude is never perfect, since the gyro outputs

include measurement and misalignment errors, and since

the computation is not perfect either, the attitude of

the EP is not perfectly known. Moreover, the attitude

errors tend to diverge and consequently corrections of

the computed attitude have to be performed. This is the

reason for employing two FHSTs and one FSS in attitude
determination.

Star tracker and Sun sensor measurements, when used

correctly, check the attitude error growth. The

information supplied by the FHSTs and by the FSS is

blended wlth the attitude computed based on the gyro

outputs and on the initial EP orientation. This

blending is done by a Kalman filter (KF). The EP on

board computer (OBC) software uses quaternlons for

attitude determination. The relationship between vector

measurements, which are the outputs of the FHSTs and of

the FSS, and the quaternion of rotation is non-linear.

Therefore an Extended Kalman filter (EKF), rather than

a KF, has to be employed.

For simplicity of implementation the EKF used by the

OBC is actually a reduced order suboptimal filter which

does not contain all the error sources in the gyros,

in the FHSTs and in the FSS [1,2]. It is, therefore,

necessary to investigate the predicted performance of
the on board reduced order EKF. To evaluate the

performance of the EKF, finer error models have to be

used in describing the performance of the true hardware

[3,4]. Such models are referred to in the literature as

"truth models" [5]. In this paper we introduce a "truth

model" which takes in account factors neglected in the

OBC EKF model. These factors are gyro, FHST and FSS

misalignments, gyro scale factor errors and the effect

of the Sun not being captured in a narrow field of view

about the boresight of the FSS.

A convenient analysis tool is the "true covariance"

simulation [6]. This paper presents such analysis of

the performance of the on board attitude determination

EKF of the EUVE satellite. The "truth model" of the

attitude determination problem is developed next. The

"design model" is then listed in Section 2.3. Next the

"true covariance" simulation algorithm is presented in

Section 3. The analysis which was carried out and its

results are presented in Section 4 and finally, the

conclusions drawn from this analysis are presented in
Section 5.

Z.2 THE TRUTH MODEL

Error Propaqa_ion Model

Open-loop _ d_termln_tlon

Consider Fig. I which describes a generic attitude

control spacecraft {S/C). The input quaternlon, ql,

represents a command attitude and qt is the quaternion
which represents the actual attitude of the S/C. As

shown in Fig. I, gyros which are mounted on the S/C
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measure its angular velocity. The readings of these

gyros are used by the Attitude Determination algorithm
to compute the quaternion qc which represents the

computed attitude. This configuration is called "open-

loop" since here qc is not fed back
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Fig. I: Generic open-loop attitude determination

configuration

into the attitude controlled S/C. Consequently in this

configuration the gyro error,dw, of these gyros is not

affecting the S/C attitude.

Let us denote by "i" the inertial coordinate system

which is the reference coordinate system and by "a'

the ACS coordinate system which which we assume to be

identical to the body system. The attitude

determination problem is that of finding the quaternion

which corresponds to the transformation matrix from "i"

to "a" (or vice-versa). Since the gyros introduce

measurement errors (dw) the computed attitude is

erroneous. Therefore the computed transformation matrix

which is supposed to transform vectors from the "i"

to the "a" frame, actually transforms the vectors
from the "i" frame to another erroneous coordinate

system which we denote by "c". Thus we distinguish

between three coordinate systems; namely, the "i", the

"a" and the "c" systems. We assume that the error in

computing the transformation matrix is small,

consequently "a" and "c" are almost identical. In

other words, a very small transformation takes us from

qc

i ............................... > a ---> c

dq

qt

Fig. 2: Schematic description of the quaternion
relations in the attitude determination

problem

the "a" to the "c" system. To the transformations

between the coordinates there correspond suitable

quaternions as depicted in Fig. 2. As indicated in this

diagram

qt = qi-to-a (1.a)

qc _ qi-to-c (I.b)

dq = qa-to-c (1.c)

The subscript "t" corresponds to the transformation to

the true attitude of the vehicle whereas the subscript

"c" denotes the transformation to the computed

attitude. (Note that "c" corresponds to the

subscripted notation 'measured' in refs. 2 and 37. When

defining a quaternlon of rotation and especially when

dealing with quaternion products, a special care has to

be given to the question of what coordinate frame the

quaternion is referred to. If each of the three

quaternions defined is referred to the coordinate

system from which it transforms vectors, then the

following relation between them holds

a
ql-to-c " ql-to-a qa-to-c (27

where the product on the right hand side of (2) is the

quaternion product (defined in the Appendix} and the

superscrlptkdenote the frame to which each quaternion
is referred . From (l.c) the rightmost quaternlon in

(27 is dq. Note that dq is the only quaternlon

referred to the body frame whereas the other two are

referred to the inertial frame. Keeping this in mind we

omit all superscripts and use the notations of (i) to

write (2) as

I I
I qc = qt dq ]
l l

(37

Differentiation of {3) yields

qc " qtdq + qtd_ (4)

It is well known [7] that

I

qt " _ qt W (57

where W is a quaternion of angular velocities defined
as follows

W - iwX + jWy + kwz (6)

The components w_,w.,w z are the components of the true
angular velocity'v_ctor at which the ACS coordinate

frame rotates with respect to the inertial frame,

coordinatized in the ACS frame. These components are

measured by gyros which supply measured (and hence

erroneous) data, In the lack of knowledge of the true

rates, the gyro outputs are used in computing the

quaternion, therefore the solution of (5) yields qc
rather than qt; that is, qc is the solution of

!

qc " _qcWm (7)

* Note that ql-to-c " i 1qa;to-c, q
all quaternions are rererreo ot°t-hae

the order of the product is reversed.

; that is, when
inertial frame
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where Wm is of the form of (6J onTy that the quaternion
components are the measured rather than the exact
angular rates.

When (5) and (7) are substituted into (4) we obtain

_qcWm = 1_qt W dq + qtd_

Define a quaternion of angular-rate error as follows

then

dW - Wm - W

W = Wm - dW

Substituting (9) and (3) into (8) yields

_qtdqWm I - dW)dq + qtd_- _qt(Wm

which can be written as

I _dq_ml oqt [d_ + _(Wm - dW)dq -

Since qt is invertible, it is possible to pre-multiply
both sides of the last equation by the inverse of
This yields the result that the expression in _e

brackets is equal to zero and consequently

I 1 1 _ I]dWdq !
I d_ = _dqWm - _Wmdq+ ]

I I

l _dwxd& (id_ : -WmXd& + _dedw + l.a)

do = -dw.d_ (ll.b)

When dq expresses a small rotation, its vector
(8) part, d_, is small, therefore the last term on the

right hand side of (It.a) is of second order and hence
is negligible. The right hand side of (If.b) is
negligible too and indeed, since the absolute value of

any quaternion of rotation is equal to _ the s_al__
part of dq satisfies the equation de - •i - ]d_JLJL/:
and since the vector part is small, de, stays close to
1, hence its time derivative is nearly zero. Note that
as do is nearly 1, the second term on the right hand
side of (ll.a) is not negligible. Consequently (II)

(9) yields

(]0)

Let us express the quaternions appearing in (]0) in
a more explicit form by their vector and scalar parts.

I I I I
I d_ I I w_

dq : I .... I Wm " t...?.
I I I I
I de_l I_ o _I

Accordingly

where d_ is the vector part of the quaternion. When the
quaternion product is carried out (see the Appendix for
the rules of quaternion product), (10) reads as follows

I I J- - I _xd_ + dentald_xwm + de_! ifI iI... I I I

l_d;_l Zl I I II_ -d_._ _1 I_ -_.d_ _I

I I

11 dwxd.l. + ded__
+z I

I_ -dw.dl _I

The last quaternion equation is equivalent to two
equations, one for the vector part of q and one for
its scalar part. Using the following rules of vector
product, Axe - -BxA and A.B : B.A, the two equations
can be written as

d_ - -_WmXd!+ _dw (12.a)

and as explained above

de - 1 (]Z.b)

The equation of interest is (12.a).

The transformation matrix T_ which corresponds to dq
can be expressed in terms of small Euler angles. Define
the angles as follows

is the roll angle error defined about the body x-axis
_is the pitch angle error defined about the body y-axi_
_uis the yaw angle error defined about the body z-axis.

Note that for small rotations the order of rotation is

irrelevant and we may refer all angles to the initial
coordinate system which prevailed before the small
rotations took place. Also note that these angles are
referred to the body frame, "a", as is implied in (2)
and (3). When the transformation matrix from the body
to the computed frame is expressed as a function of the
three Euler angles defined above and when the angles
approach zero, the transformation matrix becomes

I 1 r
i

I_v" -_, l_l

(13)

On the other hand, in terms of the components of dq,

the upper right elements of T_ are [8]

tl,2 = 2dqldq2 + 2dq3dq4

tl,3 = 2dqldq3 - 2dq2dq4

t2,3 I 2dq2dq3 + 2dqldq4

(14.a)

(14.b)

(14.c)

The first term on the right hand side of each one of
the above equations is of second order and hence is
negligible. On the other hand, dq4 appearing in the
second term is the scalar part of dq which we denoted
by do. As noted earlier this component is nearly equal
to one. For these reasons (14) can be approximated as
follows
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t], 2 _ 2dq3 (15.a)

tl, 3 _ -2dq2 (15.b)

t2, 3 _ 2dql (15.c)

Comparing (15) to the corresponding elements in (13)

yields

]

dqI= _?

i

dq 2 - _Z_"

1

dq3 . _v

The above three components of q constitute the

elements of _, thus

I) )

d! - _ _ l] (16)

)_Y__l

and (]2.a) can be written as

I ,-o l,,x,I I I I
l_( - ( -Wz 0 w x llt¢l + I dWy I

I I I II I I I

l___l )_Wy -wx o _II__'_I (_dWz_l

{17)

Closed-looo _ UQ)ermlnatlon

In the case of a closed-loop attitude determination,

the S/C is maintained at a desired (possibly time-

varying) attitude by a closed control loop which uses

the gyro outputs to keep track of the S/C angular rate.

This is shown in Fig. 3 in which a part of the control

loop of a generic attitude control system of a S/C is

presented. The purpose of this control loop is to force

the S/C to follow a prescribed angular velocity vector,

w i, and in particular to maintain a constant attitude

w6en w_=O (Normally the commanded rate w_ is a

function of the dlfference between a commanded

quaternion and the computed quaternion, qc)" We note

from Fig. 3 that

@'_i " _c (]B)

The control loop is designed to force _ to vanish, then

_c " _i (19)

and since

_c " _ + d_ (20)

therefore

_i " _ + d_

+ 9 IS/C ATTITUDE l Torque I l___), qt

w i _ COMMAND I ..J S/C )
GENERATOR (-----_ DYNAMICS (__ wT I i ) ) _-

IWc )
I ..I.........

I ". d_:
$
I :.1 ........ :
L t

I

qc '4---

I I I

ATTITUDE _[I DETERMINATION

I I

Fig. 3: Generic rate command control loop part of a

spacecraft attitude control system

Consequently, w, the actual angular rate of the S/C

differs from the desired angular rate vector, _i, by

the gyro drift rate vector, dw; that is

= _i " d_ (21)

and in particular when w i = O ; that is, when the S/C
is required to maintain a constant attitude

that is; the S/C drifts at the drift rate of the gyros

but in a direction opposite to the gyro drift. We

conclude from this discussion that _ differs from the

commanded rate by d_. Consequently the attitude of the

S/C differs from the commanded attitude by the attitude

error angles _,_, and _. In this case therefore, the

attitude errors develop according to the following

equation rather than according to (17)

I_-I I- o wz -Wy II _ I ) dwx I
I I I II I I I
I _1 " I -wz o Wxtl l_'l - I dwy
I I I II I I
I___l )_Wy -wx 0 _II_H'_Il_dwz_I

(23)

Indeed when the commanded angular rate is zero (23)

yields

_= -dWx, _= -dWy and _= -dw z

The right most term in (23) is not a white noise

vector, therefore this dynamic model, while correct, is

not suitable for use in a KF algorithm. To solve this

difficulty the standard procedure of "signal shaping _

is applied. This is done by considering the non-whlte

vector as an output of a linear system whose input is

white [5]. This is accomplished as follows.

The elements dWx,dWv,dW z are the errors in measuring

w. In other words, the) _re the errors in the x,y and

z gyros respectively. It is assumed that an accurate

enough model of the gyro errors is a one where there

are five contributions to d_, which we denote by _I,

_2, ds, w_ and _I; that is,

d_ - _I + _2 + d_ + _ + _i (_4.a)

where _1 is a vector of constant drift rates of the

gyros, _2 is a vector of random walk components of the
gyros, d_ is the vector of gyro scale factor errors and
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w_te_lis the error due to gyro mlsallgnments. _1 is the
noise component of the gyros. Slnc_ U I is

constant

_l " 0 (24.h)

and since _2 is random walk then we can write

_2 " D2 (24.c)

where E2 is whtte noise, Note that despite the
notation, does not have the units of angular
velocity. Ll)e_ the of scale factorus denote vector
errors by k, then

)' - [k x, ky, kz] (24.d)

where ' denotes the transpose and kx, kv and kz are the
scale factor errors of the x, y" and z gyros
respectively. The expression for dt is given by

_x 0 o-II
d_- IO Wy 0 [ k (24.e)

I I

IO 0 Wzl

Note that since) is a constant

of the gyro outputs in order to obtain more accurate
gyro measurements, therefore the same result is

achieved when we estimate their sum. When we combine gl
and M? into one state denoted by M, we may use (24.b}
and (Z4.c) to write the dynamic model of U

m _2 (24.i}

In order to augment the models presented in (23) and
(24) we define the following matrices

X* i

- 0 (24.f) -n*"

The gyro errors due to mtsaltgnments are generated by
the projection on the gyro input axis of the angular
velocity components which ire nominally perpendicular
to that axis. The mlsallgnmont angles are the angles by
which the gyro sensltlve mxls is off from Its nominal
orthogonal dlrectlon towards the other two coordlnate
axes. Consequently we have

(24.9)

o-ii x;!

#zx1
_zy

I; ;a J y'zo o oI I
_. !W_y - IO 0 wzw x 0

i i I

W_z I O 0 0 0 wx

where _ii i-a,y,z j-x,y,z is the non-orthogonallty
angle between the i-th gyro and the J-th axis. Now

since _ij is constant we can write

_lj" 0 tmx,y,z (24.h)
J-x,y,z

The next step in the derivation of the dynamics matrix
is the augmentation of the system error model given in
(23) with the gyro error model given in (24) [5]. Such
an augmented model has, in our case, 27 states.
Fortunately, we can eliminate 3 states by combining the
constant drift rate components and the random walk
components into one error. This wlll elimlnmte the
possibility of dlstlngulshlng between them, but thls Is
of no great consequence since even if we can estimate
them separately, we subtract them both from the reading

-y'-I

U X

Uy

l_uz_l

A i_ mm

- 0 wz -Wy - I 0 0

- wz 0 wx 0 - 1 0

Wy -wx 0 0 0 -1

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 O_

.... (2s)

nlx

niy

nlz

n2x

n2y

I_n2z_l

I_ x 0 0 -Wy-Wz 0 0 0 0-
$
I 0-_ 0 0 0-Wz-W x 0 0
I
I 0 0-w z 0 0 0 0-Wx- _A**-
I

JO 0 0 0 0 0 0 0 0
I
JO 0 0 0 0 0 0 0 0
I

o o o o o o o o_i

... (26)

d' " [_xy, #xz, #yz, #yx, #zx, dzy] (27)

We may also want to consider the misallgnment angles of
the two FHSTs and of the FSS, therefore let us denote
the vector of, the three mtsaltgnment angl_ of the
first FHST by '_, that of the second FHST.by L_ and the
vector of the F$S mlsalignmont angles by =_ where

]d' - []#x, ]#y, Z#z] (28.a)

2(, . [2#x' 2#y, 2#z] (28.b)

s(, . [S_x ' Sly, S#z ] (2e.c)

Since all of these angles are constants we may write

]_ - 0 2_ . 0 s_ . 0 (29)

With the above information and notations we can now

write the augmented dynamics equation of the "truth
model". The augmented dynamics equation of the "truth
model" is given in (30). The validity of (30) can be
verified by examining (23) - (29).
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X _

k

Idt I 0
I I I
I 12it I o
I I
I si! I o
I I__ t_
1

A _

0

0

II I*A** 0 0 0 II
II

o o o o I1
II

o o o o II

o o o o{

o o o o II

IIs_o o o o II
_ll_ _l

__1

n*I
I

I

+ I
Q

0

.... (30)

Measurement Model

Star tracker measurements

Define a star tracker coordinate system as shown in

Flg. 4. The z axis points along the boreslght of the

star tracker. Consequently the x and y axes a_e in
the image-plane of the star tracker. Denote by _ the

vector in the direction of the star and whose length is

the length of the light path from the image-plane to

the optics. It is assumed that the light which Is

emitted from the star towards which the star tracker Is

pointing, hits the image-plane close to the boreslght
such that it can be assumed that the distance between

the optics and the image plane Is nearly equal to that

of the light path from the optics to the Image-plane,

i.e. h-l_l. The signals measured by the tracker are the

projections of -_ on

the x and the y

axes which, zs
mentioned, are In

the image-plane. The
OBC converts the

two outputs of the

star tracker to

tangents of A and B.

Obviously, the tan-

gents of A and of B

are, respectively,

the projections of

-_ on the x and y

axes of the tracker,

where _ is a unit

vector in the

direction of the

star. That is, if we

denote these axes by

Xst and
respectively, thegn st

-s_

-S*

Y

Xm" -:'-Xst + ex ' I 7
SxI ____W

... (31a) /
/

Ym -_'_st + ey /
Fig. 4: Schematic diagram

l of the star tracker

... (31.b) _,_t measurements

" z_t

where x_ and y- are the tangents of A and B, "'"

denotes'"the dot mproduct of vectors and e x and e
are measurement noise signals which are assumed to b_

zero-mean white processes. (Actually, the OBC converts

x. and y_ into components of the unit vector _. For

s_all A a%d B these components are basically equal to

the respective tangents). Let us now express the vector

quantities of (3]) in the EP body coordinate system

xm - -_a.(Xst)a + ex (32.a)

Ym " -_a'(_stJa + ey (32.b)

We use an under-bar and a subscript to denote a column

matrix whose elements are the components of the vector

in question when resolved in the coordinate system

denoted by the subscript.

The observables (also known as effective

measurements) which are processed by the EKF are the

difference between measured and computed quantities.

For star tracker measurements we Feed the EKF with the

differehce between the measured components x and y

given in (32) and the corresponding computed values
which are obtained by transforming the star vector from

inertial to body coordinates. The star vector

coordinatized in the inertial Frame, which we denote by

_I, is precisely known from the almanac. Weido not
know, however, the exact value of T_, the

transformation matrix From inertial to body system. All

we know is the computed transformation matrix T_. The
relationship between the two matrices is given by

T_ a I- TcT a (33)

where Tab is the error matrix given in (]3). If we

define th_ matrix 0 as follows

I- 0 Y_ -_1
I I

0 - I -_ 0 _P I (34)
I I
I_ t_ -p o_1

then

T_ i [ + 0 (35)

We also do not know the exact direction of Xst.and._st
since the star tracker Is mlsaligned, we only Know

_tt_s. and _,+ ,_ which are the vectors_tand _,tass " ' ....umC,_f coordinate system of the FHST (thi(

Is, in the non misaligned FHST). Consequently, the

computed values are calculated In correspondence wlth
(32) as follows

Xc " "(T_I)'(Zst,ass)a (36.a)

Yc " "(T_I)'(_st,ass)a (36.b)

Using (33) and (35) these two equations become

xc " -[(l+O)T_l].(_st,ass) a (37.a)

Yc " "[(I+O)T_I].(_st,ass)a (37.b)

We note that

therefore (37) can be written as

Xc " -[_a + O_a].(_st,assJa (3g.a)

Yc " -[_a + O_a].(_st,assJa (3g.b)

When we now difference (32) and (39) the following
equations are obtained

z] - xm - xc . -_a.(Zst)a + ex + [:a + O:a]'(Zst,ass)a

... (4o.a)

z2 " Ym - Yc " "_a'(_st)a + ey + [_a + O_a]'(_st,ass)a

... (40.b)

We note that
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_st " M_'ass _st,ass (41.a)

_st " MT'ass _st,ass (41.b)

where M_'ass is the transformation matrix from the
assumed FHST coordinate system to the actual one. In
analogy to (35) it can also be shown that

M_'ass - ! - [_x] (42)

where

- [_x]- ) -_z 0 _xl
I I
I_ _y -#x 0_1

(43)

The angles _i i-x,y,z are the misalignment angles of
the actual FHST coordinates with respect to the assumed
FHST coordinates. Note that because of the closeness of
the two, the angles are the same in either coordinates.
(See development leading to (56)). When we substitute
(42) into (41) we obtain

)st " ( I - [_x] } _st,ass (44.a)

_st " ( I - [(x] } Xst,ass (44.b)

hence

Zst " Zst,ass - d x _st,ass (45.a)

ist " _st,ass " ( x Xst,ass (45.b)

When (45) are substituted into (40) the following is
obtained

zI - -_a.(_st,ass - _ x _st,ass)a + ex + [_a +

+ O_a].(_st,ass)a

z2 - -_a.(_st,ass - _ x Xst,ass)a + ey + [_a ÷

+ O_a].(_st,ass) a

which, after some multiplications and subtractions,
yields

zI - _a.(_ x _st,ass)a + O_a'(_st,ass)a + ex (46.a)

z2 m _a.(_ X _st,ass)a + O_a'(_st,ass)a + ey (46.b)

For (46) to be useful, we need to evaluate
(_s+ ass)_ and (_t,ass)_" As mentioned earlier, _la"
is EAown _rom the aTmanac, _herefore

_a l T) )I (47)

We do not know T_ but we do know T) which, for
small attitude err-ors, is quite close'to T_. The
replacement of the true value by its estimate is-one of
the features of an EKF, so, we too, follow this
practice, compute

_c " T_ _I (48)

and use _c rather than _a in (46) Next we handle
the computation of (_st,ass)a and (Xst,ass)a" It is
clear that

T,ass
(_st,ass)a = Ha (_st,ass)T,ass (49.a)

uT,ass,. , (4g.b)(_st,ass)a " _a _Zst,ass_T,ass

where T denotes the star tracker coordinate s_stem
defined at the beginning of this section and M_'ass

is the transformation matrix from the assumrd tracker

frame to the body frame. This matrix is known
precisely. Let us write

MI'ass = [ _1, m2, _3 ] (50)

where _1, _ and B_ are the three columns of MT'ass
It is c1_ar _hat (_st,ass)T, the unit vector along the
tracker assumed x axis expressed in tracker
coordinates, is given by

and similarly

111
(-Xst,ass)T " I 0 ( (51.a)

I_0_1

(_st,ass)T "

Therefore when (50) and (51) are
the following is obtained

(_st,ass)a =

)oi
I_ I (51.b)
I_O_I

substituted into (49),

_1 (52.a)

(2st,ass)a " _2 (52.b)

When (52) is substituted into (46), and when _a is
replaced in (46) by _c which is given in (48),-the
following is obtained

zI - _c.[(_)a x _I] + G_-c'_I+ ex (53.a)

z2 - _c.[(_)a x _Z] + O_-c'm2 + ey (53.b)

Noting that

0 - -[@ax]

and using the vector identity

(A x B).C - (_ x C).A

equations (53) can be written as

zI " (BI x )c)._a + (BI x Sc).@a + ex (54.a)

z2 " (B2 x Sc)._a + (B2 x _c).Ba + ey (54.b)

Expressed by its components _ given as follows

)-_x-)
I

_a " I _y I (55)I
l__z_l

however, the angles which constitute the components of
are defined in the FHST coordinate system. Therefore,
to ke p using the same angles we write _, - M_'ass _.
But MI_ass - I - [(x], therefore M_,ass d_ d -'[dx]_-

_. Consequently,

_a " _ (sc)

When (56) is substituted into (54) we obtain

Zl " (_1 x _c)._ + (_1 x _c)._a + ex (57.a)

z2 " (_2 x _c)._ + (_2 x _c).Ba + ey (57.b)

We can write (57) as follows
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zz - x sc) '- l-_-ti ZZ l- I I+
I_z2_I I_(_m2 x _c)'-II _ I

I I

I(m] x _c)' I+1
I_(m 2 x -_c)'_1

I +
_lx

I__zt

ex I
I

ey{
IO _1

... (58.a)

where ' denotes the transpose. This equation is the
measurement model of a generic FHST. Each one of the
two FHST has such a measurement equation. Writing (58)
in terms of the state vector _ and thus forming the
measurement matrix, H, Is straight forward. The matrix
which corresponds to this measurement equation for the
first FHSS is

! (ml X_c)' I
IH F " I I 02X12

l_(m2 x _c)' I

I (ml x _:)' I -I

I I O2x61I (m2x _)'1

... (58.b)

and the matrix for the second FHST is

I (m]x _c)' I I (ml x _)' I I
?HF - I • I 02X15 I I02x31

l_(mZ x _)' I I (m2 x _)' I _I

... (S8.c)

FSSmeasurement model

The geometry of the FSS measurement ts similar to
that of the FHST presented tn Ftg. 4. Here, however, we
cannot assume that the angles A and B are smell; that
is, the Sun vector is not nearly coincidental wtth the
boresight line. Therefore all the developments that
were based on this assumption are not valid in the
development of the FSS error model. Consequently a
different approach has to be taken. It is evident that

shown in Fig.4, can be expressed In the FSS
coordinates, s, as follows

_ - [-tanA, -tanB, lid (59.a)

d - [(tanA)2 + (tanB)2 + i]"I/2 (59.b)

Let _ _ denote a column matrix whose elements are
the cB_ents of _ in the _ (non-mlsaligned) FSS
coordinates. The re]ationshlp between this vector and
_s is given by

- Gs,ass_ (60}_S S _s,ass

where G_,ass is the transformation matrix from the
assumed to the fine Sun sensor coordinates. In analogy
to (42) we can write

where

G_,ass. [ - [S_x] (61)

II- 0 S_z _s_;

" [S_x]" II-S#z o s_x (62)
1_ S_y _S#x o_1

Substitution of (61) into (60) yields

_s " _s,ass [S_x] _s,ass (63)

From (63) we immediately realize that if instead of

_s a,s we use Ss, we introduce an error due to the FSS
m1_aT1gnment. _is error is - [S_x] _s,ass"

The FSS outputs are really (tanA)m and (tanB)m where
(see flg.4) tanA - Sy/h and tanB - _v/h. The subscript
m denotes the measured tanA and _anB. Define the
following column matrix

_s,m" ['(tanA)m, -(tanB)m, 1]dm (64.a)

dm - [(tanA)_ + (tanB)_ + I]"1/2 (64.b)

Let um - (tanA)m and vm - (tanB)m, then (64) can be
written as

_,m" ['Um, "Vm, ]]dm (65.a)

dm - [u_ + v_ + I] ")/2 (65.b)

Furthermore, using Taylor series expansion we can write
[9]

where _s,m " _s + d_ {66)

-W11 WI2 ] ex II

d_ - I W21 Wzz I_ey_l - We (67)

I_W3] W23_1

The matrix W is evaluated as follows [g]

W]i " dm d3, Z" m-m W12 -dm3UmVm

32
W21 - W]2 W22 - dm - dmvm (68)

W31 l -d_ W32 - -dm3vm

and ex and ev are the additive measurement errors
involved in me_surlng tanA and tanB respectively. From
(66) and (67} we obtain

"_s,m " -_s + We (69)

Substitution of (63) into (69) yields

-Ss,m" _s,ass " [Sl_x]Ss,ass + We (70)

Next we compute the estimate of _. We denote the
computed value by _s,c' The computatign is carried out
as follows

a I
_-s,c" Bs,assTc_I (71)

In (71i we actually have to use the matrix T_;I
however, since this matrix is unknown to us we use Tc
instead. SI is taken from the ephemeris. From (33)-(35_

Thus (71) can be written as

_s,c " Gsa,ass{I " [-Ox])TIsI

which can be written as

a

SS,C m Gs,ass_a . Gsa,ass[OX]@a

where _a is a column matrix whose elements are
the comp6nents of _ when the latter is resolved in the
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body, a, coordinate system. Note that since G_,as s is
orthogonal

- G_,ass[@X]S a = - (G_,ass@) x Gas,assSa

- - (G_,ass@)x _s,as

Using the last equation, we can write the former as

_S,C = _a,ass - (G_,ass 0--_x _s,ass (72)

Now define the first component of the effective

measurement (which is to be processed by the EKF) as

follows

z] = (_s,m - _s,c)x (73)

where { ), denotes thex component of the expression in
the brackets. When (70) and (72) are substituted into

(73), we obtain

zl = (_s,ass [s_ x) _s,ass + We

" _a,ass + (G_,ass@) x _s,ass)x
which yields

zl = {" [_s,assX]G_,ass @ + _s,ass x s( + We}x (74)

Following the rationale that led to (56), we can

substitute _s ass _ {74) by S. _ with practically noloss of accuracy, addition,-_muse the notation

Ga = [gl g3] (75)s,ass , g2,

therefore (74) can be written as

Zl " {['_s,m x][gl, g2, g3]B + _s,m x s_ + Wg)x (76.a)

To compute z) we apply the foregoing development but

now we use th_ y rather than the x component. This

will yield a result similar to (76.a); namely,

z2 • (['_s,m x][gl, g2, g3]@ + _s,m x s_ + Wg)y (76.b)

The last two equations can be put in the following form

j--jj- -J
Iz l, .,• • •II I+Iz21 I
I__I I_ _Izl )

I I
IS_J

l ) l
I I S#x

+ [_s, mx]) S#y

l_ _Iz S#zl
_ _)

) exll

+ w2 I II
I eyll
I II
Io 11

)__I

... (77.a)

where the subscript 2 denotes the First two rows of a

matrix The measurement matrix, H. which corresponds to
• • . .

thls measurement equation Is given by

I- I I -I
I ) J I

H s= gIx-Ss,m, q2xS-s,m, g3X_s,m 03x24 )[_s,m x)

I_ i I _12

... (77.b)

Note that the 3rd row of the square matrices in (77) is

omitted. This completes the development of the "truth

model". To sum it up, the dynamics model is given by

(30), the FHST measurement model is given by (58) and

it fits either one of the two FHSTs, and finally, the

measurement model of the FSS is given by (77).

Z.3. THE DESIGN MODEL

Error Propaqation Model

The "design model" is the simplified, reduced order

model which is assumed to be the model of the system

for the OBC filter design purposes. The following

assumptions are made in the design of the EUVE Update

Filter. The gyro scale factor errors and misalignments

are negligible (or fully compensated for). The FHSTs

and the FSS are perfectly aligned. With these

assumptions the error propagation equation of the
"truth model" reduces to

't I I 0 wz -Wy -1 0
II

"_ ) I -wz 0 wx 0 -I
II

_u I I Wy -wx 0 0 0
I=I

Uxl I o o o o 0
II

Uyll o o o o o
I) II

=_Uz_lI_ o o o o o

o ,f I Wlx-
o _ l i Wly I

II I
-1 _l I Wlzl

I+1 II
II

o ux W2x II

0 Uy W2yl)

o_l_uz_l=_W2z_ll
I

This model can be expressed as

I* A'X* *= +n

where _X*, A* and _n* are defined in (25).

... (78)

(79)

Measurement Model

Star tracker measurements

With the assumption mentioned before and

corresponding to the "design model" of (78), The FHST

measurement matrix of either star tracker reduces to

(( Zl Ii l(-(m]x Sc)_ -? - [/ ex
I

- + )

I_z2_f I_(_2 X ' ! _c_ f leyl_c)-ll I I I

(_'f'_II_o_I

(80.a)

This yields the following measurement matrix

. ! (_! x _c)'l I
HF " I l 02x 3 l (80.b)

I_ m2x _c)'l _1

It is easily seen that this is the measurement matrix
for either FHST.

Sun sensor measurements

Corresponding to the state vector of the "design

model" the FSS measurement equation is reduced to
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I Zl I I- -I I-_-I I ex II

-- '-
t___t J

.,. (m.a)

The corresponding measurement matrix is

I- I -I

* I I (81.b)gIX_s,m , g2X_s,m , g3X_s,m 03x3_i 2Hs" _

3.0 _ £OYARIANCE $1MULATION

present the so-called "true covariance"To

simulation algorithm whose development is introduced in

[6], we have to define, D, the transformation matrix
from the state vector of the "truth model" to that of

the "design model". It is easy to see that in our case

D- [I6x61 06x18 ] (82)

Using D we define the following matrices

dA = DA - A*D (83.a)

where A is t_e 24x24 matrix defined in (307. The
matrixes A, A and dA are then used to define A c as

fol lows

I-A I O-i
Ac - I--- I--_1 (83. b)

I_dAI A_I

Next, we discretize the matrices Ac and Q* where the

latter is the spectral density matrix of the white

noise vector driving the dynamics part of the "design

model" given in (78). The discretizatlon algorithm is

given in [5, pp. 296 - 299]. The discretization is
denoted as follows

Ac "'-> _-i

Q* "--> Q_-I

With Q_-I on hand, we compute Q_-I as follows

,-I-I Q* l-I I D_ (84)Q_-l" I---I [_

i_D_l

In our case, all the preceding matrices are constant

and need to be computed only once.

Between measurement updates we propagate the

matrices Ck and Pk as follows

Ck(') " I_-I Ck-I 6_-1' + q_-i (BS.a)

P_(-) " 4" * * ' *k-I Pk-I (+) 6k-I + Qk-1 (SS.b)

where C k Is the second moment matrix of the augmented
state vector whose entries are, from top to bottom, the

state vector of the "truth model" given in (307, and a

vector which is the difference between the state

esimate generated by the OBC EKF and the correct value
of this state. Note that the second vector, which has 6

components, is the correct estimation error vector.
Therefore the last 6 elements on the main diagona] of

Ck are the mean squre errors of the filter estimation
error and their evaluation is the goal of the "true

covariance" analysis. In contrast to these 6 elements,

the 6 elements on the main diagonal of P* are thek
apparent variances of the estimation error states. That
is, If the "truth model" were identical to the "design

model", these elements would have been the variances of
the estimation error.

When a measurement is acquired, the following

computations are carried out

* * -)H_' * * *' R_] "l= _ [HkPk(-)Hk ÷Kk Pk( (86.a)

P_(+) - [I-KkHk] P_(-) [I-KkHk]' + KkRkK k (86.b)

_t

dHk = Hk - HkD (86.c)

J I I 0 I
Bk = J-'; .... l---;-;-i (86.d)

J-KkdH k II-KkHk_I

Ck(+ ) = Bk Ck(- ) Bk' + K_ R k K E' (86.e)

4.0 CASE STUDY OBJECTIVES AND RESULTS

There were three primary objectives in the case

studies. First, the performance of the EP filter was
examined in the ideal situation when its model was

equivalent to the truth model. Secondly, the expected

onorbit behavior of the filter was examined. Lastly, a

sensitivity analysis was performed.

were as follows:

- Case I: No Errors

- Case 2: Expected Errors

- Case 3: Sensitivity Analysis

3A:

3B:

3C:

3D:

3E:

3F:

3G:

3H:

The cases studied

Gyro white noise about each axis

Gyro random walk about each axis

Gyro Misalignments about each axis

Gyro Scale factor errors about each axis

FHST noise

FHST # Z misalignments about each axis
FSS noise

FSS misaltgnments about each axis

Each simulation was ten minutes. The attitude and

gyro drift estimation errors were determined by the

truth model and update filter. The results in sections

4.l, 4.2, and 4.3 represent the truth mode] determined

estimation errors. The following is a listing of

nominal simulation input values:

Initial State Variances

Initial Attitude Error: 1800 arcsec/axis

Initial Drift Rate Bias: 0.5 arcsec/sec/axis

DYnamicNo_seIn___ts

IRU White Noise drift troll}: (0.68936 arcsec/sec_)_

(pitch and yaw axesT: (4.246E-2 arcse_/Ae_/_)_

IRU Random Walk Drift: (4.4413E-5 arcsec/sec_/_)_/axis

Measuremen_ Noise Input

FHST Measurment Noise Variances: (14 arcsec) 2

FSS Measurement Noise Varlances: (24.4]31 arcsec) 2

4.1 Case 1: No r.__EEQ.Zt

The following case demonstates the performance of
the filter in the ideal case when the truth model was

identical to the design model. The final attitude and

gyro drift errors were as follows:
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Attitude Estimation Errors

(arcseconds)

Roll Pitch Yaw

4.8784 2.8321 2.5080

Gyro Drift Estimation Errors

(arcseconds/second)

Roll Pitch Yaw

3.022E-2 0.9103E-2 8.313E-3

4.2 _ Z: Expected [J_TQ_CE

This case demonstrates the expected performance of
the filter on orbit. The attitude is defined relative

to one of the FHSTs (#1 in our simulations). Thus, the

obtained attitude accuracy is on the order of the

accuracy of the FHSTs which are the primary attitude

sensor. The following are additional expected on orbit

input errors:

FHST @i Misalignment: 0 arcseconds/axis

FHST #2 Misalignment: 24 arcseconds/axis

FSS Misalignment: 35 arcseconds/axis

Gyro Scale Factor Error: I000 ppm/axis

Gyro Misalignment: 8 arcseconds/axis

The results are the following:

Attitude Estimation Errors

(arcseconds)
Roll Pitch Yaw

16.5005 lg.lg84 13.0119

Gyro Drift Estimation Errors

(arcseconds/second)
Roll Pitch Yaw

3.2513E-2 5.1160E-2 6.9354E-2

Comparing these values to the ideal case, one can see

errors induced by only considering a subset of the true
state vector in state estimation. The attitude

estimation errors are off by several orders of

magnitude and the gyro drift estimation errors are off

almost an order of magnitude.

4.3 Case _: Sensitivity

In the following simulations, the sensitivity of

onboard filter to additional attitude sensor noises,

misalignments, and scale factor errors was tested.

These errors were applied separately to each sensor

axis, and the resulting attitude and gyro drift

estimation errors were observed. Sensitivity to the

various error sources were determined in the following

manner about each spacecraft axis (where applicable):

Dynamic noise (white & random walk): 3x nominal/axis

FHST #2 Misalignments: 2x nominal/axis

FSS Misalignments: 2x nominal/axis

Measurement noise (FHSTs & FSS): 2x nominal

The following tables and figures demonstrate

filter performance due to the increased errors.

Es)Imatlon Errors (arcsecond_)

Case Axis Roll Pitch Yaw

3A x 18.6886 19.1984 13.0119

3A y 16.5006 19.2332 13.0179
3A z 16.5005 19.2065 13.0435

38 x 16.5007 19.1984 13.0119

3B y 16.5005 19.1994 13.0121
38 z 16.5005 19.1987 13.0125

the

3C x 16.5005 19.1984 13.0119

3C y 16.5005 19.1984 13.0119

3C z 16.5005 19.1984 13.0119

30 x 16.5005 19.1984

3D y 16.5005 19.1984
3D z 16.5005 19.1984

13.0119
13,0119

13,0119

3E 19.1600 25.7578 Id.0298

29.6328

25.5485
19.3448

3F x 27.2160

3F y 22.3209
3F z 17.3819

15,9332
13.0534

21.7191

3G 16.9075 18.9557 13.0284

3H x 16.7568

3H y 16.8615
3H z 16.5005

24.9939

19.8543

19.1984

13.1199
16.3459

13.0119

so oo-

+.:+ ts-

ar so-

18 1_+

I

12 '0 I
I

'''VVI_,,,

TI_E (SECONDS)

Fig. 5: The standard deviation of the pitch estimation

error vs. time. (The solid line is that of the

true error, and the dashed line is of the

error predicted by the update filter

covariance matrix.)

The time history of the standard deviations of the

attitude and gyro drift estimation errors was plotted

for Case 2 (expected onorbit errors). The results

about each axls were found to be similar. A typical

plot (pitch attitude error) is presented in Fig. 5.

Case Axls

3A x

3A y

3A z

3B x

38 y

3B z

G_oOrlft Estimation

(arcseconds/second)

Roll Pitch Yaw

8.7164E-2 5.I160E-2 6.9354E-2

3.ZS13E-2 5.1451E-2 6.9364E-2

3.2513E-2 5.1202E-2 6.9566E-Z

3.2564E-2 5.I160E-2 6.9354E-2
3.2513E-2 5.1197E-2 6.9355E-2

3.2513E-2 5.1161E-2 6.9378E-2
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3C
3C
3C

3D
3D
30

3E

3F
3F
3F

x 3.2513E-2 5.1160E-2 6.9354E-2
y 3,2513E-2 6.8993E-Z 6,9354E-Z
z 3.2513E-2 5,1160E-2 8.3385E-2

x 3.8577E-2 5.II60E-2 6.9354E-2
y 3.2513E-2 5.1160E-2 6.g354E-2
z 3.2513E-2 5.1160E-2 6.9354E-2

3.5639E-2 6.5980E-2 8.9894E-2

x 3.2513E-2 5.g675E-2 10.2473E-2
y 3.2513E-2 5.1277E-2 8.g347E-Z
z 3.2513E-2 7.7423E-2 6.980gE-2

r_ 7.

) L

_ o i9

TI_E (SECONDS]

Fig. 6: The standard deviation of the pitch gyro drift
estimation error vs. time. {The solid line is
that of the true error, and the dashed is of
the error predicted by the update Filter
covariance matrix,)

3G 3.2543E-2 5.125gE-2 6.8545E-2

3H x 3.2513E-2 5.1467E-2 8.757GE-2
3H y 3.2513E-2 6.0912E-2 7.138gE-Z
3H z 3.2513E-2 5.1160E-2 6.9354E-2

A typical plot for gyro drift error is presented in
Fig. 6.

Of the gyro noises, the white noise component had the
most effect on the filter performance. As expected, the
effect was confined primarily to the axls being
corrupted. When the X-axis gyro white noise was
increased by 3x, the roll gyro drift estimation error
jumped 5.0E-2 arcseconds/second, and the roll
estimation errors jumped approximately 2 arcseconds.
The effect of an increase in pitch and yaw gyro white
noise had a very nominal affect on estimation errors.
Since EUVE has a roll rate of 3 RPO, the roll 9yro has
to use less accurate gyro data as compared to the pitch
and yaw axes which are approximately inertial. This
inaccuracy in roll gyro data Is modeled by an increase
in the white noise component In the roll gyro data.
Thus, an increase in the white noise about the roll
axis affects the attitude much more significantly than
an increase about the pitch and yaw axes. The gyro
misalignments about the pltch and yaw axes corrupted

their respective drift estimates significantly due to
their projections picking up the relatively high roll
rate. The roll axis mlsallgnments have no effect due
to zero yaw and pitch rates. The gyro scale factors
only showed up in the roll gyro drift estimation error
due the above mentioned high relavive roll rate and 0
pitch and yaw rates. The FHST #2 misalignments were
the largest contributer to attitude and gyro drift
estimation errors as expected with the FHST X-axis
mlsalignment causing roll and pitch errors of 27,2 and
29.6 arcseconds. The FHST Z-axis caused a yaw error of
21.7 arcseconds. The FSS misalignments affect on the
attitude and gyro drift estimation errors were
significant but not as significant as the FHSTs due to
the larger sensor noise variance. The FSS X-axis
misalignment translated into a pitch error of 24.9
arcseconds while a Y-axis misallgnment caused roll and
yaw attitude errors of 16.B and 16.3 arcseconds
respectively. The FHST measurement noise increases
affected the attitude estimation errors almost as much
as the FHST mlsalignments with roll, pitch, and yaw
errors of 19.1, 25.7, and 18.0 arcseconds respectively.
An increase in FSS measurement noise had a relatively
small effect on estimation errors. The resulting roll,
pitch, and yaw attitude errors were 16.9, 18.9, and
13.0 arcseconds respectively. The pitch attitude
estimation error went down slightly as compared to the
nominal simulation, and the roll and yaw attitude
errors increased slightly. The reason the attitude
estimation errors were affected so little as compared
to the increased FHST noise simulation was due to the

filter weighting the more accurate FHST measurements
heavier than the less accurate FSS measurements.

5.0 CONCLUSIONS

Of all the errors, the FHST misalignments proved to
cause the most significant attitude and gyro drift
estimation errors. The roll and pitch estimation
errors increased by approximately I0 arcseconds from
the nominal estimation errors when the X-axls
misallgnment of FHST #2 was doubled to 48 arcseconds.
Doubling the Z-axls misalignment of FHST #2 increased
the yaw estimation errors by approximately 8
arcseconds. The pitch and yaw gyro drift estimation
errors were affected most by Z and Y axis
misallgnments of FHST #2. An increase in the white
noise about the gyro X-axls was responsible for the
largest roll gyro drift estimation error. The gyro
drift estimation errors only affects the system when
measurement update periods are large. EUVE should have
a sufficient number of star measurement updates from
the FHSTs. If not, the attitude estimation accuracy
could degrade significantly. Overall, the results
showed the EUVE update filter to be quite robust even
though some significant errors were put into the
system, lhls study demonstrated the six states modeled
in the filter are the most significant states needed
for onboard attitude estimation.

i I

Ell
qI " ...l and

I Pll
I__I

where £l, £_
quaterniFns and

Express the two quaternions q] and q2 as follows

I I

qz " I
I Pzl
I_ _1

are the vector parts of the respective

Pl, P2 are their scalar parts. Then
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] _Ixz2 + PlZ2 + P2Z1 I
I I

qlq2 " I ..................... ]
I I
I PlP2 - £tE2 I
I_ _1

The upper part of the column yields three components
which are the components of the imaginary part of the
quaternion product and the lower part yields the scalar
part of the product.
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